Copied to
clipboard

G = C62.37D4order 288 = 25·32

21st non-split extension by C62 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.37D4, C32:11C4wrC2, C12:S3:9C4, C12.29(C4xS3), (C2xC12).92D6, (C2xC6).11D12, C32:4Q8:9C4, C6.29(D6:C4), (C3xC12).171D4, C3:2(D12:C4), M4(2):4(C3:S3), (C3xM4(2)):10S3, (C6xC12).59C22, C12.132(C3:D4), C12.59D6.3C2, C4.29(C32:7D4), C22.3(C12:S3), (C32xM4(2)):14C2, C2.11(C6.11D12), C4.3(C4xC3:S3), (C4xC3:Dic3):2C2, (C3xC12).51(C2xC4), (C3xC6).60(C22:C4), (C2xC4).39(C2xC3:S3), SmallGroup(288,300)

Series: Derived Chief Lower central Upper central

C1C3xC12 — C62.37D4
C1C3C32C3xC6C3xC12C6xC12C12.59D6 — C62.37D4
C32C3xC6C3xC12 — C62.37D4
C1C4C2xC4M4(2)

Generators and relations for C62.37D4
 G = < a,b,c,d | a6=b6=1, c4=b3, d2=a3, ab=ba, cac-1=ab3, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=a3b3c3 >

Subgroups: 572 in 132 conjugacy classes, 47 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C32, Dic3, C12, D6, C2xC6, C42, M4(2), C4oD4, C3:S3, C3xC6, C3xC6, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C4wrC2, C3:Dic3, C3xC12, C2xC3:S3, C62, C4xDic3, C3xM4(2), C4oD12, C3xC24, C32:4Q8, C4xC3:S3, C12:S3, C2xC3:Dic3, C32:7D4, C6xC12, D12:C4, C4xC3:Dic3, C32xM4(2), C12.59D6, C62.37D4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, C3:S3, C4xS3, D12, C3:D4, C4wrC2, C2xC3:S3, D6:C4, C4xC3:S3, C12:S3, C32:7D4, D12:C4, C6.11D12, C62.37D4

Smallest permutation representation of C62.37D4
On 72 points
Generators in S72
(1 52 68 5 56 72)(2 49 69)(3 54 70 7 50 66)(4 51 71)(6 53 65)(8 55 67)(9 37 57 13 33 61)(10 34 58)(11 39 59 15 35 63)(12 36 60)(14 38 62)(16 40 64)(17 31 41 21 27 45)(18 28 42)(19 25 43 23 29 47)(20 30 44)(22 32 46)(24 26 48)
(1 45 15 5 41 11)(2 46 16 6 42 12)(3 47 9 7 43 13)(4 48 10 8 44 14)(17 35 56 21 39 52)(18 36 49 22 40 53)(19 37 50 23 33 54)(20 38 51 24 34 55)(25 57 66 29 61 70)(26 58 67 30 62 71)(27 59 68 31 63 72)(28 60 69 32 64 65)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(1 7 5 3)(2 6)(4 8)(9 41 13 45)(10 48)(11 43 15 47)(12 42)(14 44)(16 46)(17 61 21 57)(18 60)(19 63 23 59)(20 62)(22 64)(24 58)(25 35 29 39)(26 34)(27 37 31 33)(28 36)(30 38)(32 40)(49 65)(50 68 54 72)(51 67)(52 70 56 66)(53 69)(55 71)

G:=sub<Sym(72)| (1,52,68,5,56,72)(2,49,69)(3,54,70,7,50,66)(4,51,71)(6,53,65)(8,55,67)(9,37,57,13,33,61)(10,34,58)(11,39,59,15,35,63)(12,36,60)(14,38,62)(16,40,64)(17,31,41,21,27,45)(18,28,42)(19,25,43,23,29,47)(20,30,44)(22,32,46)(24,26,48), (1,45,15,5,41,11)(2,46,16,6,42,12)(3,47,9,7,43,13)(4,48,10,8,44,14)(17,35,56,21,39,52)(18,36,49,22,40,53)(19,37,50,23,33,54)(20,38,51,24,34,55)(25,57,66,29,61,70)(26,58,67,30,62,71)(27,59,68,31,63,72)(28,60,69,32,64,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,7,5,3)(2,6)(4,8)(9,41,13,45)(10,48)(11,43,15,47)(12,42)(14,44)(16,46)(17,61,21,57)(18,60)(19,63,23,59)(20,62)(22,64)(24,58)(25,35,29,39)(26,34)(27,37,31,33)(28,36)(30,38)(32,40)(49,65)(50,68,54,72)(51,67)(52,70,56,66)(53,69)(55,71)>;

G:=Group( (1,52,68,5,56,72)(2,49,69)(3,54,70,7,50,66)(4,51,71)(6,53,65)(8,55,67)(9,37,57,13,33,61)(10,34,58)(11,39,59,15,35,63)(12,36,60)(14,38,62)(16,40,64)(17,31,41,21,27,45)(18,28,42)(19,25,43,23,29,47)(20,30,44)(22,32,46)(24,26,48), (1,45,15,5,41,11)(2,46,16,6,42,12)(3,47,9,7,43,13)(4,48,10,8,44,14)(17,35,56,21,39,52)(18,36,49,22,40,53)(19,37,50,23,33,54)(20,38,51,24,34,55)(25,57,66,29,61,70)(26,58,67,30,62,71)(27,59,68,31,63,72)(28,60,69,32,64,65), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (1,7,5,3)(2,6)(4,8)(9,41,13,45)(10,48)(11,43,15,47)(12,42)(14,44)(16,46)(17,61,21,57)(18,60)(19,63,23,59)(20,62)(22,64)(24,58)(25,35,29,39)(26,34)(27,37,31,33)(28,36)(30,38)(32,40)(49,65)(50,68,54,72)(51,67)(52,70,56,66)(53,69)(55,71) );

G=PermutationGroup([[(1,52,68,5,56,72),(2,49,69),(3,54,70,7,50,66),(4,51,71),(6,53,65),(8,55,67),(9,37,57,13,33,61),(10,34,58),(11,39,59,15,35,63),(12,36,60),(14,38,62),(16,40,64),(17,31,41,21,27,45),(18,28,42),(19,25,43,23,29,47),(20,30,44),(22,32,46),(24,26,48)], [(1,45,15,5,41,11),(2,46,16,6,42,12),(3,47,9,7,43,13),(4,48,10,8,44,14),(17,35,56,21,39,52),(18,36,49,22,40,53),(19,37,50,23,33,54),(20,38,51,24,34,55),(25,57,66,29,61,70),(26,58,67,30,62,71),(27,59,68,31,63,72),(28,60,69,32,64,65)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(1,7,5,3),(2,6),(4,8),(9,41,13,45),(10,48),(11,43,15,47),(12,42),(14,44),(16,46),(17,61,21,57),(18,60),(19,63,23,59),(20,62),(22,64),(24,58),(25,35,29,39),(26,34),(27,37,31,33),(28,36),(30,38),(32,40),(49,65),(50,68,54,72),(51,67),(52,70,56,66),(53,69),(55,71)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D4E4F4G4H6A6B6C6D6E6F6G6H8A8B12A···12H12I12J12K12L24A···24P
order1222333344444444666666668812···121212121224···24
size112362222112181818183622224444442···244444···4

54 irreducible representations

dim111111222222224
type+++++++++
imageC1C2C2C2C4C4S3D4D4D6C4xS3C3:D4D12C4wrC2D12:C4
kernelC62.37D4C4xC3:Dic3C32xM4(2)C12.59D6C32:4Q8C12:S3C3xM4(2)C3xC12C62C2xC12C12C12C2xC6C32C3
# reps111122411488848

Matrix representation of C62.37D4 in GL6(F73)

100000
010000
000100
00727200
0000720
000001
,
0720000
1720000
00727200
001000
0000720
0000072
,
7590000
14660000
001000
000100
000001
0000460
,
010000
100000
001000
00727200
0000270
0000072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[7,14,0,0,0,0,59,66,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,46,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,27,0,0,0,0,0,0,72] >;

C62.37D4 in GAP, Magma, Sage, TeX

C_6^2._{37}D_4
% in TeX

G:=Group("C6^2.37D4");
// GroupNames label

G:=SmallGroup(288,300);
// by ID

G=gap.SmallGroup(288,300);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,100,675,346,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^4=b^3,d^2=a^3,a*b=b*a,c*a*c^-1=a*b^3,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a^3*b^3*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<